How to use Gaussian/GaussView to do this experiment

(Step-by-Step Guide)

Dr. Yingjin Ma @ ETH Zurich

(work together with Jonny Proppe for this practical course)

Outline:

- Part-1. Preparation
- Part-2. Build the molecule by GaussView
- Part-3. Set up calculations
- Part-4. Search the transition states (optional)
- Part-5. Analysis the results from Gaussian

Part-1. Preparation

```
a. log into the "euler" cluster, open a terminal, type 
ssh -X < nethz>@euler.ethz.ch
```

b. After successfully log in to the "euler" cluster vi ~/.bashrc
add the following line into .bashrc () module load gaussian/09d1
after that, press "ESC", type ":wq", and press "Enter" to save and quit

c. "source" the .bashrc file, and open the GaussView source ~/.bashrc gview &

Some basic linux commends you may use:

- 1. `mkdir' function creates a new, empty directory with name DIRNAME. *mkdir DIRNAME*
- 2. `mv' moves or renames files (or directories)
 mv SOURCE DIRECTORY
 mv SOURCE SOURCE_WITH_NEW_NAME
- 3. `cp' copies files (or, optionally, directories) *cp SOURCE DIRECTORY cp SOURCE SOURCE_WITH_NEW_NAME*
- `scp´ copy file between different computers scp [[user@]host1:]file1 ... [[user@]host2:]file2

(move file to directory) (rename file)

(copy file to directory) (copy file)

Hints: For detailed information, type "info commend" and press "enter"

Part-2. Build the molecule by GaussView

phycocyanobilin in ZZZsss(M) configuration

a. Search "GaussianView"/"GaussView" in applications. Open it. (If use your local machine)

Ga	ussView 5.0.8 _ 🗆 🗙
<u>File E</u> dit <u>V</u> iew <u>C</u> alculate <u>R</u> esults <u>W</u> indows <u>H</u> elp	
🖸 🛇 >R 👔 🔌 Carbon Tetrahedral 🛛 🗹 🚍 🗄	≝⋇♀♀ ⋇⋷ ⋧⋧⋬⋣⋎⋵⋵⋳⋵⋓⋭⋼⋷
×□□•×	₽ D D S S & Y = S = S = S = S = S = S = S = S = S = S =
Builder Fragment:	Carbon Tetrahedral

(GaussView Control Panel)

b. Click "File" - "New" - "Create New molecule" (If there is no Building Window)

(Building Window)

c. Choose "Element Fragment", change "Carbon Tetrahedral" to "Carbon Trivalent", then add it into the Building Window (You could also find the builder by right-click on the building window)

k •																	Ga	uss	View 5.0.8 _ 🗆 ×
<u>F</u> ile	<u>File Edit View Calculate Results Windows Help</u>																		
۴ <u>۲</u>		%R	8 + E	9 6 0	Ca	rbo	n T	riva	aler	t (S	6-A-	A)	⊻[<.	P 4	}	}म ×	⊷중 ※및 >>> ∰12726 및 실 🛍 Ka 🕫
			Va	K	D	C		1		A	R	P		\sim	8	.	je,	. 1	[□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
) I	Builder Fragment: Carbon Tetrahedral																		
							5	lem	ont	Frag	mer	te							a G1.M1.V1 - New _ D X
4	×									rug	mer	res							
-	н						х	Bq										He	
-	Li Na	Be Ma											AI	C Si	N P	0 S	F	Ne Ar	
Î	ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
F	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	
_	Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	\sim
_	Fr	Ra	Ac Ce	Rt Pr	Nd	Sg Pm	Bh Sm	Hs	Gd] ть	Dv	Но	Er	Tm	Yb	Lu			
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
s	Sele	ct C	Carb	on F	rag	mer	nt:				(_						
	0		_	c=	=	:c=	=	=°(1			
_	Att	л				_				Cark	oon	Triva	alent	t (S-	A-A)			4 atoms, 7 electrons, neutral, doublet

Hints: You can hold on left/right/middle "click", and at the same time move you mouse, you will find the fragment in the Building Window is responding to your actions.

d. Choose "Ring Fragment", change the Builder Fragment to "pyrrole", add it to the joint atom of "Carbon Trivalent" by clicking.

After adding the two "pyrroles", it probably looks like this, you need the rotate the left "pyrroles", and delete the "H" which is connecting to the "N" in the right "pyrroles".

Hints: Any wrong actions can be canceled by "Ctrl" + "z"

e. Modify the molecular structure

In the control panel, GaussView supplies many tools that can be used to modify the structure, such as "Modify Bond" bellow.

*	GaussView 5.0.8	_ = ×
<u>File Edit View Calculate Results V</u>	<u>W</u> indows <u>H</u> elp	
🛍 💽 🌬 🎽 🔌 pyrrole	⊻ ≒<∦≉ ₩₩♥ ≶ * ⊑ < * 14 100 ₪ ≞ ₩ 15 =	
≫ 🗅 ≌ ⁊ 🗙 🥱 🤄 🦓 🐓 🖪 R a	🖉 🍠 🚺 🔁 💭 🕼 🕼 🌾 (Default Scheme) 🛛 💆 🚳 🖙 🎛 🗢	

In this example, one can click the "Modify Dihedral", then sequentially click the 4 atoms in the following figure. On the pop-up "Dihedral Semichem SmartSlide", set Atom1 as "Rotate group" and Atom 4 as "Fixed", then change the value to 180°.

(before)

🐁 G1:M2 - Dihed	ral Semichem SmartSlide	e(tm) ×
Displacement:		
Atom 1: Rotate grou	ıps ⊻ Atom 4: Fixed	
-180.000	180.00000	180.000
View Along 7	Ok Cancel H	lelp //

(After)

For the "H" which is connecting to the "N" in the right "pyrroles", you can first click "Delete Atom" button, then click this "H" atom.

One can also use "Modify Bond" to change the bond type in order to make it looks better. It is optional since the final bond type is depend on the optimized structure.

Bond Type:				
♦ None ♦	 \Rightarrow	*	_ ♦	

Now, you can repeat the steps "c", "d", "e", until you build up the initial structures of phycocyanobilin (ZZZsssM).

Hints: Many introductions of GaussView can be found in the web, such as Introduction to GaussView 5.0 - YouTube (04:29) <u>https://www.youtube.com/watch?v=sxKyfwy51h4</u>

Part-3. Set up calculations

a. Click "Calculate" - "Gaussian Calculation Setup", a pop-up slide will emerge. Many options will be involved in this experiment.

	G7:M1:V1 - Gaussian Calculation Setup ×										
Title:											
Keywords:	# hf/3-21g geom=connectivity										
Charge/Mult.:	01										
Job Type	Method Title Link 0 General Guess NBO PBC Solvation Add. Inp.										

b1. If only the self-consistent file (SCF) calculation is needed. Set up the "Job Type" as "Energy". The other options are no need to be set at this moment.

b2, If the optimized geometry is needed.

Set up the "Job Type", change to "Opt + Freq" (or only "optimization"), and let it Optimize to a "Minimum", e.g.

Job Type Method Title	Link 0 Genera	al Guess NBO PBC Solva	tion Add. Inp.								
Opt+Freq 7											
Optimize to a	Minimum 🛛	Use RFO step	Use Quadratic Macrostep								
Calculate Force Constants	Never Z	Use tight convergence criteri	a								
Compute Raman	Default 🛛 🗹	Compute VCD	Save Normal Modes								
Compute ROA	No	Read Incident Light Freqs Defa	ult 🔟 🔲 Skip diag. of full matrix								
Select Normal Modes	Modes:	Atom	s:								
Anharmonic Corrections	Anharmonic Corrections Specify Anharmonic Modes: 1										

c. Set up "Method", change Method line to "Ground State" - "DFT... " - "Restricted" - "BPV86"; and Basis Set line to "STO-3G", Fitting set "AUTO".

(Notice: The "BPV86" functional will be changed to "BP86" later)

Job Type	Method	Title	Link 0	General	Guess	NBO	PBC	Solvation	Add. Inp.	
									🗆 Mu	Itilayer ONIOM Model
Method:	Ground St	ate 🗵	DFT		∑ Res	stricted	Z	BPV86	Ā	
Basis Set:	STO-3G	_ ∑	<u> </u>	Fitting Set:	AUTO		Z			
Charge:) Spin	: Sin	glet 🛛							

d. Set up "Title" (as you like)

Job Type	Method	Title	Link 0	General	Guess	NBO	PBC	Solvation	Add. Inp.	
Job Title:										
Optimizing	g the initial	structi	ure of phy	/cocyanobi	ilin (ZZZs	ss)				<u> </u>

e. Set up the "Link" by yourself, either "Options" or "Edit" button can be used. Normally 8 GB memory should be enough for this experiment, and 8 processors (at most 24 for each student) can be chosen. Remember that you need to save the check-point file for the later usage.

Job Type Method	Title Link 0	General Guess NBO PBC Solvation Add. Inp.
Options Edit		
Memory Limit:	Specify	<u>⊻</u> 8 GB <u>⊻</u>
Chkpoint File:	Default name	y [parent file name}.chk
Read-write File:	Don't save	<u>▼</u>
Linda Workers:	Don't use	Σ
Shared Processors:	Specify	⊻ 24

f. Set up "General", choose (add) "Ignore Symmetry", since this molecule is obviously no symmetry.

Job Type Method Title Link 0 General Guess	NBO PBC Solvation Add. Inp.				
□ Use Quadratically Convergent SCF	Additional Print				
Use Modified Redundant Coordinates	Vrite Connectivity				
Ignore Symmetry	Compute polarizabilities				
☐ Use Counterpoise	Write PDB Data				
Write Gaussian Fragment Data					
Use MaxDisk= 2 GB Y					

g. The "NBO", "Guess", "PBC", "Solvation" and "Add. Inp." options are no need to be specified at this moment.

h. After finish all of the set-ups, one can click "Edit", in the pop-up window, save it as the "Gaussian Input Files", then one can check and modify this input in Text editor.

(Notice: no need to choose "Write Cartesians", since the internal coordinates should work better in this experiment)

*	Save Gaussian Input File	×								
Look <u>i</u> n:	ama/practical_course/new_opt/BP86/ 🗹 🕻 🗲 🗈	* 📰 🏢								
	ssem t1.com									
□ zzzsssr	□ zzzssm_to_be_opted.com									
File <u>n</u> ame:	zzzsssm_to_be_opted.com	<u>S</u> ave								
File <u>t</u> ype:	Gaussian Input Files (*.gjf *.com)	Cancel								
Save <u>a</u> s:	Auto 7	<u>H</u> elp								
U Write C	Cartesians 🖾 Append Extra Input 🖾 New Molecul	e Group								

i. In the Text editor, we need change the functional to "BP86", and also add "pop=full" to active detailed output.

😰 zzzssm_t	to_be_opted.com [modified] - KWrite	×
File Edit View Tools Settings	<u>H</u> elp	
New Open Save Save As Clos	se Undo Redo	
%nprocshared=24		<u>^</u>
%mem=8GB		
%chk=zzzsssm to be opted.chk		
<pre>#p opt freq rbp86/sto-3g/aut</pre>	o nosymm geom=connectivity pop=full 🔪	
	, , , , , , , , , , , , , , , , , , ,	
Optimizing the initial struc	ture of phycocyanobilin (ZZZsss)	
1 3		
0 1		
C		
N 1.1.3	9249092	
C 2 1.3	9286604 1 111.07380906	
C 3 14	7591460 2 106 49341198 1 -1 52566300	0
C 4 13	6571547 3 108 28594859 2 1 14367413	õ
2		
	E-V	
Line: 4 Col: 16 💋 INS LINE Lat	leX zzzsssm_to_be_opted.com	

Please notice:

1) Typical time for each optimization job is about 15~30min. When there is a job running you can prepare the other configurations.

2) If you plan to do the transition state search (e.g. QST3 in the next part), the order of atoms in the three configurations must be the same. It means it is wise to build the base structure (e.g. ZZZsss), then modify some bond/angle/dihedral to get the other structure.

3) **DO NOT** submit you job directly. Use "*bsub -n ncpus -W* 8:00 *nohup g*09 *your_input_file.com*", *e.g.*

bsub -n 8 -W 8:00 nohup g09 SCF_ZZZsssM.com

Part-4. Search the transition states using QST3 in Gaussian (optional)

Assuming that we already get all of the optimized structures, and we want to search the transition state (TS) between ZZZsss and ZZZass, in this case, a guess structure of TS need to be given when using QST3.

I. When using GaussView

a. Open the optimized structure of ZZZsss (e.g. .log or .fchk file), click "Edit" - "Copy", then you can find now the molecule is in the working "Control Panel".

b. Open a new building window, click "Edit" - "Paste" - "Add to Molecule Group"

c. Open the optimized structure of ZZZassM (e.g. .log or .chk file), copy and also add it into the building window that opened in b.

d. Build a guess TS structure (it can be obtained by modifying some bond/angle/dihedral in this case), copy and also add it into the building window that opened in b. If you click the "list view", you will see

e. Set up the Calculations. An example is shown bellow:

1	G1:M1:V1 - Gaussian Calculation Setup	×
Title: Title Card R	lequired	
Keywords: # opt=(calcf	c,qst3) freq sto-3g nosymm geom=connectivity rbp86	
Charge/Mult.: 01		
Job Type Method Title	Link 0 General Guess NBO PBC Solvation Add. Inp.	
Opt+Freq Z		
Optimize to a	TS (QST3) 🗹 🗆 Use RFO step 🖾 Use Quadratic Macroste	р
Calculate Force Constants	Once 🗹 🗆 Use tight convergence criteria	
Compute Raman	Default 7 Compute VCD Save Normal Modes	
Compute ROA	No ⊻ Read Incident Light Freqs Default ⊻ ⊐ Skip diag. of full matrix	
□ Select Normal Modes	Modes: Atoms:	
Anharmonic Corrections	Specify Anharmonic Modes: 1	
Geometry to use for TS Gu	Jess = 3	
Additional Keywords: rbp86		ate
Scheme: (Unnamed Schem	ne) 🛛 🗸	
Submit Quick Lau	inch <u>C</u> ancel <u>Edit</u> <u>R</u> etain <u>D</u> efaults <u>H</u> elp	

Hint: You could also use QST2, then the guess structure is not needed because the averaged structure will be used as the guess structure.

II. When using Text editor

This is quite straightforward, just modify the Gaussian input file

%nproc=8 %mem=8GB %chk=TS_zzzsss_to_zzzass.chk #p opt=(calcfc,qst3) freq rbp86/sto-3g/auto nosymm geom=connectivity

Reactant (ZZZsss)

charge spin [copy the structure]

Product

charge spin [copy the structure]

TS-guess (must in the last)

charge spin [give the structure] (Don't forget these is a blank line in the end)

When the job finish, you need to check the log file. One imaginary frequency should be found for a Transition state. e.g.

	1	2	3
	А	А	А
Frequencies	-45.3774	11.3251	17.8614

After get the transition states from QST3

* Better use opt=(TS,tight) to do a further optimization of the TS structure from QST3

* Frequencies analysis should be followed in order to check whether it is a true TS state.

* The calculation of reaction path should be followed by integrating the intrinsic reaction coordinate (IRC)

For the advanced usages of "opt", "freq", and "IRC" <u>http://www.gaussian.com/g_tech/g_ur/k_opt.htm</u> <u>http://www.gaussian.com/g_tech/g_ur/k_freq.htm</u> <u>http://www.gaussian.com/g_tech/g_ur/k_irc.htm</u>

Part-5. Analysis the results from Gaussian

For the **general information** of the your finished job, one can use GaussView to open a .**chk** file, then click "Results" - "Summary". The detailed **text output** could also be opened by "View file".

🚯 G1:M1:V1 - Gaussian Calculation Summary 🛛 🛪				
opt-ZZZsssm				
File Name	opt_zzzssm			
File Type	.log			
Calculation Type	FOPT			
Calculation Method	RB3LYP			
Basis Set	6-31G			
Charge	0			
Spin	Singlet			
E(RB3LYP)	-1950.26738510	a.u.		
RMS Gradient Norm	0.0000669	a.u.		
Imaginary Freq				
Dipole Moment	5.6454	Debye		
Point Group	C1			
Job cpu time: 0 days 7 hours 25 minutes 40.2 seconds.				
<u>Ok</u> <u>V</u> iew File <u>S</u> ave Data				

For the **electron configuration** as well as the **orbital energies**, they can be shown by clicking "Edit" - "MOs".

For example, in this case the HOMO is NO. 156 orbital with orbital energy -0.17697 A.U., the LUMO is NO. 157 orbital with orbital energy -0.09833 A.U..

🚹 💦 G1:M1 - MOs 🛛 🕹				
Current Surface:	169 (a) - 0.08010			
	168 (a) — 0.07564			
	167 (a) — 0.07387			
	166 (a) - 0.06487			
	165 (a) - 0.05760			
ಂಭ್ಯ ಅವು	164 (a) - 0.05047			
15 - 1 5 - 15	163 (a) - 0.03929			
	162 (a) - 0.00333			
1,5 5 6 6 9 9 5 5 5 5 5 5 5 5 5	161 (a)0.01387			
	160 (a) -0.03414			
Ĩ	159 (a) -0.04426			
	158 (a) -0.05434			
	157 (a) — -0.09833			
	156 (a) <mark>- 1 /</mark> -0.17697			
Nana	155 (a) -0.21562			
none	154 (a) -0.22920 🔽			
Charge: 0 Spin: Singlet 1 Gaussia	n MOs from: /var/autofs/home/eth/			
New MOs Visualize Calculation Diagra	ım			
Wavefunction: Restricted	Adjust Occupancy			
Permutation List:				
Occupancy (Alpha) 1-463				
<u>Ok</u> <u>Cancel</u> <u>H</u> elp				

For the **Atomic charges and Dipole Moment**, one can use GaussView to open a .chk/.fchk file, then they can be shown by click "Results" - "Charge Distribution".

For the **"electron density"**/ **"spin density"**/ **"molecular orbitals" etc.,** use GaussView by clicking "Results" - "Surfaces/Contours". In the pop-up slide, one can use the "Cube Actions" to generate the cube file, "Surface Actions" - "New Surface" button to show the HOMO orbital.

G2:M1:V1 - Surfaces and Contours ×		
Cubes Available:	Cube Actions	
MO (mo = 156 ; npts = 112,97,65 ; res (A) = 0.176392	2,0.176392,0.176392	
MO (mo = 157 ; npts = 112,97,65 ; res (A) = 0.176392	2,0.176392,0.176392	
Surfaces Available:	Surface Actions v	
Isovalue for new surfaces: MO = 0.020000 Den	sity = 0.000400	
Contours Available:	Contour Actions	
Add views for new surfaces/contours		
	li	

HOMO orbital (NO. 156)